Active Contours Using Additive Local and Global Intensity Fitting Models for Intensity Inhomogeneous Image Segmentation
نویسندگان
چکیده
This paper introduces an improved region based active contour method with a level set formulation. The proposed energy functional integrates both local and global intensity fitting terms in an additive formulation. Local intensity fitting term influences local force to pull the contour and confine it to object boundaries. In turn, the global intensity fitting term drives the movement of contour at a distance from the object boundaries. The global intensity term is based on the global division algorithm, which can better capture intensity information of an image than Chan-Vese (CV) model. Both local and global terms are mutually assimilated to construct an energy function based on a level set formulation to segment images with intensity inhomogeneity. Experimental results show that the proposed method performs better both qualitatively and quantitatively compared to other state-of-the-art-methods.
منابع مشابه
Brain MR Image Segmentation Using Local and Global Intensity Fitting Active Contours/Surfaces
In this paper, we present an improved region-based active contour/surface model for 2D/3D brain MR image segmentation. Our model combines the advantages of both local and global intensity information, which enable the model to cope with intensity inhomogeneity. We define an energy functional with a local intensity fitting term and an auxiliary global intensity fitting term. In the associated cu...
متن کاملActive contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity
This paper presents a region-based active contour method for the segmentation of intensity inhomogeneous images using an energy functional based on local and global fitted images. A square image fitted model is defined by using both local and global fitted differences. Moreover, local and global signed pressure force functions are introduced in the solution of the energy functional to stabilize...
متن کاملNew Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation
We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the e...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملComparison of Region Based Active Contour Models
Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contour models (ACMs) have been widely used as attractive image segmentation methods because they always can achieve sub-pixel accuracy, provide closed and smooth contours/surfaces and can also be treated as automatic segmentation while th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016